|
1
|
4 |
|
import {EPSILON} from './config' |
|
2
|
4 |
|
import {gcd, primeFactors} from './bigint' |
|
3
|
4 |
|
import {rationalApproximation, continuedFraction} from './SternBrocotTree' |
|
4
|
|
|
|
|
5
|
|
|
/** |
|
6
|
|
|
* @class Rational Number |
|
7
|
|
|
* @name Rat |
|
8
|
|
|
*/ |
|
9
|
4 |
|
export class Rat { |
|
10
|
|
|
n: bigint |
|
11
|
|
|
d: bigint |
|
12
|
|
|
|
|
13
|
|
|
/** |
|
14
|
|
|
* Initialize a rational number. |
|
15
|
|
|
*/ |
|
16
|
|
|
constructor(numerator: bigint|number=0n, denominator: bigint|number=1n) { |
|
17
|
483 |
|
this.n = BigInt(numerator) |
|
18
|
483 |
|
this.d = BigInt(denominator) |
|
19
|
483 |
|
this.normalize() |
|
20
|
|
|
} |
|
21
|
|
|
|
|
22
|
|
|
/** |
|
23
|
|
|
* The decimal approximation. |
|
24
|
|
|
*/ |
|
25
|
|
|
valueOf(): number { |
|
26
|
4233 |
|
return Number(this.n) / Number(this.d) |
|
27
|
|
|
} |
|
28
|
|
|
|
|
29
|
|
|
/** |
|
30
|
|
|
* The text representation. |
|
31
|
|
|
*/ |
|
32
|
|
|
toString(): string { |
|
33
|
71 |
|
return this.n.toString() + ( this.d === 1n ? '' : '/' + this.d.toString() ) |
|
34
|
|
|
} |
|
35
|
|
|
|
|
36
|
|
|
/** |
|
37
|
|
|
* Returns a text profile of the number in various formats and it's value after common transformations. |
|
38
|
|
|
*/ |
|
39
|
|
|
public get profile(): string { |
|
40
|
4 |
|
const p = [`Rat: ${this.toString()} (≈${+this})`] |
|
41
|
4 |
|
p.push(`Mixed: ${this.mixedFractionString()}`) |
|
42
|
4 |
|
p.push(`Continued: ${this.continuedFractionString()}`) |
|
43
|
4 |
|
p.push(`Factorization: ${this.primeFactorizationString()}`) |
|
44
|
4 |
|
p.push(`Egyptian: ${this.egyptianFractionString()}`) |
|
45
|
4 |
|
p.push(`Babylonian: ${this.babylonianFractionString()}`) |
|
46
|
4 |
|
p.push(`psin(t): ${this.psin().toString()}`) |
|
47
|
4 |
|
p.push(`pcos(t): ${this.pcos().toString()}`) |
|
48
|
4 |
|
p.push(`ptan(t): ${this.ptan().toString()}`) |
|
49
|
4 |
|
return p.join('\n') |
|
50
|
|
|
} |
|
51
|
|
|
|
|
52
|
|
|
/** |
|
53
|
|
|
* Clone this. |
|
54
|
|
|
*/ |
|
55
|
|
|
clone(): Rat { |
|
56
|
68 |
|
return new Rat(this.n, this.d) |
|
57
|
|
|
} |
|
58
|
|
|
|
|
59
|
|
|
/** |
|
60
|
|
|
* Normalize the numerator and denominator by factoring out the common denominators. |
|
61
|
|
|
*/ |
|
62
|
|
|
normalize(): void { |
|
63
|
|
|
|
|
64
|
|
|
// normalize 0/1, 1/0, 0/0 |
|
65
|
620 |
|
if (this.n === 0n) { |
|
66
|
56 |
|
if (this.d !== 0n) { |
|
67
|
53 |
|
this.d = 1n |
|
68
|
|
|
} |
|
69
|
56 |
|
return |
|
70
|
|
|
} |
|
71
|
564 |
|
if (this.d === 0n) { |
|
72
|
17 |
|
this.n = this.n > 0n ? 1n : -1n |
|
73
|
17 |
|
return |
|
74
|
|
|
} |
|
75
|
|
|
|
|
76
|
|
|
// normalize 1/1 |
|
77
|
547 |
|
if (this.n === this.d) { |
|
78
|
121 |
|
this.n = this.d = 1n |
|
79
|
121 |
|
return |
|
80
|
|
|
} |
|
81
|
|
|
|
|
82
|
|
|
// remove negative denominator |
|
83
|
426 |
|
if (this.d < 0n) { |
|
84
|
7 |
|
this.n = -this.n |
|
85
|
7 |
|
this.d = -this.d |
|
86
|
|
|
} |
|
87
|
|
|
|
|
88
|
|
|
// reduce numerator and denomitator by the greatest common divisor |
|
89
|
426 |
|
const divisor = gcd(this.n, this.d) |
|
90
|
426 |
|
this.n /= divisor |
|
91
|
426 |
|
this.d /= divisor |
|
92
|
|
|
|
|
93
|
|
|
} |
|
94
|
|
|
|
|
95
|
|
|
/** |
|
96
|
|
|
* Add this to that. |
|
97
|
|
|
*/ |
|
98
|
|
|
add(that: Rat): Rat { |
|
99
|
74 |
|
const r = new Rat(this.n * that.d + that.n * this.d, this.d * that.d) |
|
100
|
74 |
|
r.normalize() |
|
101
|
74 |
|
return r |
|
102
|
|
|
} |
|
103
|
|
|
|
|
104
|
|
|
/** |
|
105
|
|
|
* Subtract this from that. |
|
106
|
|
|
*/ |
|
107
|
|
|
sub(that: Rat): Rat { |
|
108
|
38 |
|
return this.add(that.neg()) |
|
109
|
|
|
} |
|
110
|
|
|
|
|
111
|
|
|
/** |
|
112
|
|
|
* Multiply that by this. |
|
113
|
|
|
*/ |
|
114
|
|
|
mul(that: Rat): Rat { |
|
115
|
18 |
|
const r = new Rat(this.n * that.n, this.d * that.d) |
|
116
|
18 |
|
r.normalize() |
|
117
|
18 |
|
return r |
|
118
|
|
|
} |
|
119
|
|
|
|
|
120
|
|
|
/** |
|
121
|
|
|
* Divide this by that. |
|
122
|
|
|
*/ |
|
123
|
|
|
div(that: Rat): Rat { |
|
124
|
43 |
|
const r = new Rat(this.n * that.d, this.d * that.n) |
|
125
|
43 |
|
r.normalize() |
|
126
|
43 |
|
return r |
|
127
|
|
|
} |
|
128
|
|
|
|
|
129
|
|
|
/** |
|
130
|
|
|
* Mediant of this and that. |
|
131
|
|
|
*/ |
|
132
|
|
|
mediant(that: Rat): Rat { |
|
133
|
2 |
|
const r = new Rat(this.n + that.n, this.d + that.d) |
|
134
|
2 |
|
r.normalize() |
|
135
|
2 |
|
return r |
|
136
|
|
|
} |
|
137
|
|
|
|
|
138
|
|
|
/** |
|
139
|
|
|
* Minimum of this and that. |
|
140
|
|
|
*/ |
|
141
|
|
|
min(that: Rat): Rat { |
|
142
|
2 |
|
return this.isLessThan(that) ? this : that |
|
143
|
|
|
} |
|
144
|
|
|
|
|
145
|
|
|
/** |
|
146
|
|
|
* Maximum of this and that. |
|
147
|
|
|
*/ |
|
148
|
|
|
max(that: Rat): Rat { |
|
149
|
2 |
|
return this.isGreaterThan(that) ? this : that |
|
150
|
|
|
} |
|
151
|
|
|
|
|
152
|
|
|
/** |
|
153
|
|
|
* Raise this to the power of that. |
|
154
|
|
|
*/ |
|
155
|
|
|
pow(that: Rat): Rat { |
|
156
|
|
|
// zero |
|
157
|
37 |
|
if (that.n === 0n) { |
|
158
|
1 |
|
return new Rat(1n) |
|
159
|
|
|
} |
|
160
|
|
|
// integer |
|
161
|
36 |
|
if (that.d === 1n) { |
|
162
|
35 |
|
return new Rat(this.n**that.n, this.d**that.n) |
|
163
|
|
|
} |
|
164
|
|
|
// fraction |
|
165
|
|
|
else { |
|
166
|
1 |
|
const estimate = Math.pow(+this, +that) |
|
167
|
1 |
|
return floatToRat(estimate) |
|
168
|
|
|
} |
|
169
|
|
|
} |
|
170
|
|
|
|
|
171
|
|
|
/** |
|
172
|
|
|
* Returns the dot product of this and that. |
|
173
|
|
|
*/ |
|
174
|
|
|
dot(that: Rat): bigint { |
|
175
|
1 |
|
return this.n * that.n + this.d * that.d |
|
176
|
|
|
} |
|
177
|
|
|
|
|
178
|
|
|
/** |
|
179
|
|
|
* Returns true if this equals that. |
|
180
|
|
|
*/ |
|
181
|
|
|
equals(that: Rat): boolean { |
|
182
|
2 |
|
return this.n === that.n && this.d === that.d |
|
183
|
|
|
} |
|
184
|
|
|
|
|
185
|
|
|
/** |
|
186
|
|
|
* Returns true if this approximates the number. |
|
187
|
|
|
*/ |
|
188
|
|
|
approximates(n: number): boolean { |
|
189
|
2079 |
|
return Math.abs(+this - n) < EPSILON |
|
190
|
|
|
} |
|
191
|
|
|
|
|
192
|
|
|
/** |
|
193
|
|
|
* Returns true if this is greater than that. |
|
194
|
|
|
*/ |
|
195
|
|
|
isGreaterThan(that: Rat): boolean { |
|
196
|
27649785 |
|
return this.n * that.d > that.n * this.d |
|
197
|
|
|
} |
|
198
|
|
|
|
|
199
|
|
|
/** |
|
200
|
|
|
* Returns true if this is less than that. |
|
201
|
|
|
*/ |
|
202
|
|
|
isLessThan(that: Rat): boolean { |
|
203
|
3 |
|
return this.n * that.d < that.n * this.d |
|
204
|
|
|
} |
|
205
|
|
|
|
|
206
|
|
|
/** |
|
207
|
|
|
* Absolute value of this. |
|
208
|
|
|
*/ |
|
209
|
|
|
abs(): Rat { |
|
210
|
2 |
|
const r = this.clone() |
|
211
|
2 |
|
if (r.n < 0) r.n = -r.n |
|
212
|
2 |
|
return r |
|
213
|
|
|
} |
|
214
|
|
|
|
|
215
|
|
|
/** |
|
216
|
|
|
* Opposite (negative) of this. |
|
217
|
|
|
*/ |
|
218
|
|
|
neg(): Rat { |
|
219
|
43 |
|
const r = this.clone() |
|
220
|
43 |
|
r.n = -r.n |
|
221
|
43 |
|
return r |
|
222
|
|
|
} |
|
223
|
|
|
|
|
224
|
|
|
/** |
|
225
|
|
|
* Returns true if this is less than zero. |
|
226
|
|
|
*/ |
|
227
|
|
|
isNegative(): boolean { |
|
228
|
10 |
|
return this.n < 0 |
|
229
|
|
|
} |
|
230
|
|
|
|
|
231
|
|
|
/** |
|
232
|
|
|
* Returns true if this is a finite number. |
|
233
|
|
|
*/ |
|
234
|
|
|
isFinite(): boolean { |
|
235
|
2 |
|
return this.d !== 0n |
|
236
|
|
|
} |
|
237
|
|
|
|
|
238
|
|
|
/** |
|
239
|
|
|
* The reciprocal, or multiplicative inverse, of this. |
|
240
|
|
|
*/ |
|
241
|
|
|
inv(): Rat { |
|
242
|
1 |
|
return new Rat(this.d, this.n) |
|
243
|
|
|
} |
|
244
|
|
|
|
|
245
|
|
|
/** |
|
246
|
|
|
* Square root of this. |
|
247
|
|
|
*/ |
|
248
|
|
|
sqrt(): Rat { |
|
249
|
2 |
|
return this.root(2) |
|
250
|
|
|
} |
|
251
|
|
|
|
|
252
|
|
|
/** |
|
253
|
|
|
* Returns the nth root, a number which approximates this when multiplied by itself n times. |
|
254
|
|
|
*/ |
|
255
|
|
|
root(n: number): Rat { |
|
256
|
|
|
|
|
257
|
|
|
// Handle 0/1, 1/0, -1/0, 0/0, 1/1 |
|
258
|
5 |
|
if (this.n === 0n || this.d === 0n || this.n === this.d) { |
|
259
|
2 |
|
return this.clone() |
|
260
|
|
|
} |
|
261
|
|
|
|
|
262
|
3 |
|
if (this.isNegative()) { |
|
263
|
1 |
|
throw `Roots of negative numbers like ${this.toString()} are too complex for this basic library` |
|
264
|
|
|
} |
|
265
|
|
|
|
|
266
|
2 |
|
return floatToRat(Math.pow(+this, 1/n)) |
|
267
|
|
|
// return functionToRat(r => r.pow(n), +this) |
|
268
|
|
|
} |
|
269
|
|
|
|
|
270
|
|
|
/** |
|
271
|
|
|
* Return the closest integer approximation. |
|
272
|
|
|
*/ |
|
273
|
|
|
round(): bigint { |
|
274
|
1 |
|
return BigInt(Math.round(+this)) |
|
275
|
|
|
} |
|
276
|
|
|
|
|
277
|
|
|
/** |
|
278
|
|
|
* Returns the largest integer equal to or smaller than. |
|
279
|
|
|
*/ |
|
280
|
|
|
floor(): bigint { |
|
281
|
22 |
|
return BigInt(Math.floor(+this)) |
|
282
|
|
|
} |
|
283
|
|
|
|
|
284
|
|
|
/** |
|
285
|
|
|
* Returns the smallest integer equal to or greater than. |
|
286
|
|
|
*/ |
|
287
|
|
|
ceil(): bigint { |
|
288
|
2 |
|
return BigInt(Math.ceil(+this)) |
|
289
|
|
|
} |
|
290
|
|
|
|
|
291
|
|
|
/** |
|
292
|
|
|
* Parametric sine: 2t / (1 + t²) |
|
293
|
|
|
* @see https://youtu.be/Ui8OvmzDn7o?t=245 |
|
294
|
|
|
*/ |
|
295
|
|
|
psin(): Rat { |
|
296
|
19 |
|
if (this.d === 0n) return new Rat(0n) |
|
297
|
17 |
|
const one = new Rat(1) |
|
298
|
17 |
|
const two = new Rat(2) |
|
299
|
17 |
|
const n = two.mul(this) |
|
300
|
17 |
|
const d = one.add(this.pow(two)) |
|
301
|
17 |
|
return n.div(d) |
|
302
|
|
|
} |
|
303
|
|
|
|
|
304
|
|
|
/** |
|
305
|
|
|
* Parametric cosine: (1 - t²) / (1 + t²) |
|
306
|
|
|
*/ |
|
307
|
|
|
pcos(): Rat { |
|
308
|
19 |
|
if (this.d === 0n) return new Rat(-1n) |
|
309
|
17 |
|
const one = new Rat(1) |
|
310
|
17 |
|
const two = new Rat(2) |
|
311
|
17 |
|
const t2 = this.pow(two) |
|
312
|
17 |
|
const n = one.sub(t2) |
|
313
|
17 |
|
const d = one.add(t2) |
|
314
|
17 |
|
return n.div(d) |
|
315
|
|
|
} |
|
316
|
|
|
|
|
317
|
|
|
/** |
|
318
|
|
|
* Parametric tangent: psin() / pcos() |
|
319
|
|
|
*/ |
|
320
|
|
|
ptan(): Rat { |
|
321
|
8 |
|
return this.psin().div(this.pcos()) |
|
322
|
|
|
} |
|
323
|
|
|
|
|
324
|
|
|
/** |
|
325
|
|
|
* Mixed fraction as a string. |
|
326
|
|
|
*/ |
|
327
|
|
|
mixedFractionString(): string { |
|
328
|
5 |
|
const integerPart = this.isNegative() ? this.ceil() : this.floor() |
|
329
|
5 |
|
const fractionPart = this.sub(new Rat(integerPart)).toString() |
|
330
|
5 |
|
return integerPart ? `${integerPart} + ${fractionPart}` : fractionPart |
|
331
|
|
|
} |
|
332
|
|
|
|
|
333
|
|
|
/** |
|
334
|
|
|
* Returns the integers representing the continued fraction. |
|
335
|
|
|
*/ |
|
336
|
|
|
*continuedFraction(): Generator<number> { |
|
337
|
11 |
|
if (this.n === 0n || this.d === 0n) { |
|
338
|
2 |
|
yield +this |
|
339
|
|
|
} |
|
340
|
|
|
else { |
|
341
|
9 |
|
for (const n of continuedFraction(+this)) { |
|
342
|
22 |
|
yield n |
|
343
|
|
|
} |
|
344
|
|
|
} |
|
345
|
|
|
} |
|
346
|
|
|
|
|
347
|
|
|
/** |
|
348
|
|
|
* Continued fraction as a string. |
|
349
|
|
|
*/ |
|
350
|
|
|
continuedFractionString(): string { |
|
351
|
10 |
|
const a: string[] = [] |
|
352
|
10 |
|
for (const r of this.continuedFraction()) { |
|
353
|
21 |
|
a.push(r.toString()) |
|
354
|
|
|
} |
|
355
|
10 |
|
const n = a.shift() |
|
356
|
10 |
|
if (n !== undefined && this.d !== 0n) { |
|
357
|
9 |
|
let s = n.toString() |
|
358
|
9 |
|
if (a.length) { |
|
359
|
6 |
|
s += '; ' + a.join(', ') |
|
360
|
|
|
} |
|
361
|
9 |
|
return `[${s}]` |
|
362
|
|
|
} |
|
363
|
1 |
|
return '[]' |
|
364
|
|
|
} |
|
365
|
|
|
|
|
366
|
|
|
/** |
|
367
|
|
|
* Returns an array of the prime factors with their exponents. |
|
368
|
|
|
*/ |
|
369
|
|
|
primeFactorization(): Array<[bigint, bigint]> { |
|
370
|
8 |
|
const f: Array<[bigint, bigint]> = [] |
|
371
|
8 |
|
if (this.n !== 1n) { |
|
372
|
7 |
|
f.push(...primeFactors(this.n)) |
|
373
|
|
|
} |
|
374
|
8 |
|
if (this.d !== 1n) { |
|
375
|
11 |
|
f.push(...primeFactors(this.d).map(f => {f[1]=-f[1]; return f})) |
|
376
|
|
|
} |
|
377
|
8 |
|
return f.sort((a, b) => { |
|
378
|
30 |
|
return Number(a[0] - b[0]) |
|
379
|
|
|
}) |
|
380
|
|
|
} |
|
381
|
|
|
|
|
382
|
|
|
/** |
|
383
|
|
|
* Prime factorization as a calc string. |
|
384
|
|
|
*/ |
|
385
|
|
|
primeFactorizationString(): string { |
|
386
|
8 |
|
const a: string[] = [] |
|
387
|
8 |
|
for (const p of this.primeFactorization()) { |
|
388
|
28 |
|
a.push(p[1]===1n ? p[0].toString() : `${p[0]}^${p[1]}`) |
|
389
|
|
|
} |
|
390
|
8 |
|
return a.join(' * ') |
|
391
|
|
|
} |
|
392
|
|
|
|
|
393
|
|
|
/** |
|
394
|
|
|
* A list of unit fractions which add up to this number. |
|
395
|
|
|
*/ |
|
396
|
|
|
egyptianFraction(): Array<Rat> { |
|
397
|
7 |
|
const r: Rat[] = [] |
|
398
|
7 |
|
const f = new Rat(1n) |
|
399
|
7 |
|
let t = this.clone() |
|
400
|
|
|
|
|
401
|
|
|
// start with the integer part if non-zero |
|
402
|
7 |
|
const integerPart = this.floor() |
|
403
|
7 |
|
if (integerPart) { |
|
404
|
4 |
|
const integerRat = new Rat(integerPart) |
|
405
|
4 |
|
r.push(integerRat) |
|
406
|
4 |
|
t = t.sub(integerRat) |
|
407
|
|
|
} |
|
408
|
|
|
|
|
409
|
|
|
// increment the denominator of f, substracting it from t when bigger, until t has a numerator of 1 |
|
410
|
7 |
|
while (t.n !== 1n) { |
|
411
|
27649782 |
|
f.d++ |
|
412
|
27649782 |
|
if (t.isGreaterThan(f)) { |
|
413
|
11 |
|
r.push(f.clone()) |
|
414
|
11 |
|
t = t.sub(f) |
|
415
|
|
|
} |
|
416
|
|
|
} |
|
417
|
|
|
|
|
418
|
|
|
// include the final t |
|
419
|
7 |
|
r.push(t) |
|
420
|
|
|
|
|
421
|
7 |
|
return r |
|
422
|
|
|
} |
|
423
|
|
|
|
|
424
|
|
|
/** |
|
425
|
|
|
* Egyptian fraction as a calc string. |
|
426
|
|
|
*/ |
|
427
|
|
|
egyptianFractionString(): string { |
|
428
|
7 |
|
return this.egyptianFraction().join(' + ') |
|
429
|
|
|
} |
|
430
|
|
|
|
|
431
|
|
|
/** |
|
432
|
|
|
* A dictionary with the exponents of 60 and their coefficents, which add up to this number. |
|
433
|
|
|
*/ |
|
434
|
|
|
babylonianFraction(): Array<string> { |
|
435
|
9 |
|
const a: string[] = [] |
|
436
|
9 |
|
let n = Number(this.floor()) |
|
437
|
9 |
|
let r = Math.abs(+this - n) |
|
438
|
9 |
|
let d = 0 |
|
439
|
|
|
// consume increasing powers until the integer part is divided |
|
440
|
9 |
|
for (let p=0; n > 0; p++) { |
|
441
|
9 |
|
d = n % 60 |
|
442
|
9 |
|
if (d !== 0) { |
|
443
|
8 |
|
a.unshift(`${d} * 60^${p}`) |
|
444
|
|
|
} |
|
445
|
9 |
|
n = (n - d) / 60 |
|
446
|
|
|
} |
|
447
|
|
|
// consume decreasing powers until the remainder is accumulated |
|
448
|
|
|
// @todo use a more precise calculation to get rid of this abhorrent epsilon |
|
449
|
9 |
|
for (let p=-1; r > 1e-10; p--) { |
|
450
|
79 |
|
r *= 60 |
|
451
|
79 |
|
d = Math.floor(r) |
|
452
|
79 |
|
r -= d |
|
453
|
79 |
|
if (d !== 0) { |
|
454
|
78 |
|
a.push(`${d} * 60^${p}`) |
|
455
|
|
|
} |
|
456
|
79 |
|
n = (n - d) / 60 |
|
457
|
|
|
} |
|
458
|
9 |
|
return a |
|
459
|
|
|
} |
|
460
|
|
|
|
|
461
|
|
|
/** |
|
462
|
|
|
* Babylonian fraction as a calc string. |
|
463
|
|
|
*/ |
|
464
|
|
|
babylonianFractionString(): string { |
|
465
|
9 |
|
const a: string[] = [] |
|
466
|
9 |
|
const f = this.babylonianFraction() |
|
467
|
9 |
|
for (const i of f) { |
|
468
|
86 |
|
a.push(`${i}`) |
|
469
|
|
|
} |
|
470
|
9 |
|
return a.join(' + ') |
|
471
|
|
|
} |
|
472
|
|
|
|
|
473
|
|
|
} |
|
474
|
|
|
|
|
475
|
|
|
/** |
|
476
|
|
|
* Find a Rat approximation of the floating point number. |
|
477
|
|
|
*/ |
|
478
|
4 |
|
export const floatToRat = (n: number): Rat => { |
|
479
|
|
|
|
|
480
|
|
|
// Handle special values: 0/0, 1/0, -1/0 |
|
481
|
20 |
|
if (isNaN(n)) return new Rat(0, 0) |
|
482
|
19 |
|
if (n===Infinity) return new Rat(1, 0) |
|
483
|
14 |
|
if (n===-Infinity) return new Rat(-1, 0) |
|
484
|
|
|
|
|
485
|
|
|
// Shortcut for numbers close to an integer or 1/integer |
|
486
|
13 |
|
if (Math.abs(n%1) < EPSILON) return new Rat(Math.round(n)) |
|
487
|
9 |
|
if (Math.abs(1/n%1) < EPSILON) return new Rat(1, Math.round(1/n)) |
|
488
|
|
|
|
|
489
|
|
|
// Traverse the Stern–Brocot tree until a good approximation is found |
|
490
|
|
|
// If negative, search for the positive value and negate the result |
|
491
|
7 |
|
const negative = n < 1 |
|
492
|
7 |
|
const r = rationalApproximation(Math.abs(n)) |
|
493
|
7 |
|
return negative ? r.neg() : r |
|
494
|
|
|
} |
|
495
|
|
|
|
|
496
|
|
|
/** |
|
497
|
|
|
* Parse the string for a numeric value and return it as a Rat. |
|
498
|
|
|
*/ |
|
499
|
4 |
|
export const stringToRat = (s: string): Rat => { |
|
500
|
|
|
|
|
501
|
|
|
// Handle special values: 0/0, 1/0, -1/0 |
|
502
|
6 |
|
if (s==='NaN') return new Rat(0, 0) |
|
503
|
5 |
|
if (s==='Infinity') return new Rat(1, 0) |
|
504
|
4 |
|
if (s==='-Infinity') return new Rat(-1, 0) |
|
505
|
|
|
|
|
506
|
3 |
|
const [n, d] = s.split('/', 2) |
|
507
|
3 |
|
if (d === undefined) { |
|
508
|
2 |
|
return floatToRat(Number(n)) |
|
509
|
|
|
} |
|
510
|
1 |
|
return new Rat(BigInt(n), BigInt(d)) |
|
511
|
|
|
|
|
512
|
|
|
} |
|
513
|
|
|
|
|
514
|
|
|
/** |
|
515
|
|
|
* Pi, an approximation of the ratio between a circle's circumference and it's diameter. |
|
516
|
|
|
*/ |
|
517
|
|
|
// export const π = new Rat(3141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587n, 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n) |
|
518
|
|
|
|
|
519
|
|
|
export default Rat |
|
520
|
|
|
|